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Abstract

There is a continued need for simple, robust, yet accurate methods for measuring the surface/atmosphere exchange of a
wide variety of trace gases and particulates. Conditional sampling is a relatively new method that has received increasing
attention in recent years because it is related to theoretically attractive eddy covariance, but does not require a rapid response
sensor for the covariate. It does require rapid measurement of the vertical wind speed,w, and sorting of sampled air into two
separate lines based on the direction ofw. As originally proposed, the flux was then calculated asF=β1Cσw, where1C
is the mean difference in concentration between the upward and downward moving eddies,σw the standard deviation of the
vertical wind speed, andβ an empirical coefficient. Subsequent exposition showed thatβ was derivable from the statistics of
joint Gaussian distribution, although field experiments have consistently found values in the range of 0.56 to 0.58, somewhat
lower than the theoretical expectation of≈0.62–0.63. Here, we reexamine the method, and show that if the flux is instead
expressed asF=b1σ

2
w, whereb1 is the regression-estimated slope of the concentration vs. wind speed relation, then it is exactly

equivalent to eddy covariance. The aim of conditional sampling then becomes an estimation ofb1 as1C/1W. We show that
this quantity has a consistent positive bias when samples are sorted simply into positive and negative excursions from mean
w. Inclusion of a sampling deadband, symmetric about the meanw, improves the accuracy of the slope estimate and decreases
its variance as well.

A potential problem with conditional sampling, regardless of which formulation may be used, is the effect of random
measurement error (noise) in the wind speed measurement. We show that this introduces systematic errors into conditional
sampling, while eddy covariance measurements are unaffected. Direct and indirect assessments indicate that these errors are
too small to be significant for the sonic anemometer that we used, but it is probably wise for practitioners of the method
to make certain that such is the case for the instruments used in their particular systems. We conclude that conditional
sampling is a maturing method, with an increasing body of evidence indicating that the underlying relationships between
scalar concentration and wind speed are sufficiently robust to support widespread use. Published by Elsevier Science B.V.
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1. Introduction

Turbulent flux measurement continues to pose chal-
lenges to those interested in surface–atmosphere ex-
change (Baldocchi et al., 1988). Eddy covariance is
the most attractive method from a theoretical stand-
point, but it requires coincident measurement of both
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vertical wind speed and the concentration of the scalar
of interest at a frequency sufficient to encompass all
eddies contributing to transport. There are only a few
entities for which sensors with sufficient dynamic re-
sponse exist, so there has long been interest in alter-
native approaches that might somehow allow the use
of slower instruments to measure concentration.

Businger and Oncley (1989) examined sets of raw
eddy covariance measurements of vertical wind speed,
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humidity, and temperature and noted that if the scalar
observations of temperature and humidity were segre-
gated according to the sign of the vertical wind speed,
then the flux was proportional to the product ofσw
and the difference in concentration between the two
sample bins:

F = βσw1C (1)

They found that the coefficient of proportionality,β,
was relatively insensitive to stability and appeared to
be equal to≈0.6. Subsequently, Baker (1992) and
Wyngaard and Moeng (1992) independently derived
the underlying basis of the method, and Baker (1992)
built and demonstrated a system for measuring fluxes
of H2O and CO2 by conditional sampling, using a
portable infrared gas analyzer. The method has since
been tested and applied to a variety of constituent
gases, including methane, nitrous oxide (Beverland
et al., 1996), ozone (Katul et al., 1996), and pesticides
(Majewski, 1993).

Briefly, the derivation presented by Baker (1992)
began with the eddy covariance equation, in which
the flux of any entrained scalar is given by the mean
covariance of its concentration and the vertical wind
speed, recognizing that correction must be made for
density fluctuations due to concurrent transport of heat
and water vapor (Webb et al., 1980).

F = w′C′ (2)

From regression analysis, by definition the mean
covariance of two variables is:

w′C′ = rwCσwσc (3)

However, this is only true if the ‘independent’ or
‘predictor’ variable (w in this case) is measured with-
out error. We will proceed with the derivation and
return to this potentially important point later. In
the original derivation, Baker (1992) substituted for
rwC an estimator known as the biserial correlation
coefficient,rb (Pearson, 1910):

rb = pq

z

1C

σC
(4)

whereq and p are the relative proportions of obser-
vations in the major and minor classes if the data are
segregated according tow, andz the area under the

unit normal curve cut off atq. When this substitution
is made, the estimate of the covariance becomes:

w′C′ = pq

z
1Cσw (5)

Comparison of eqs. (5) and (1) shows thatβ is thus
equivalent to the statistical estimatorpq/z. The theo-
retical value ofpq/z, whenp andq are approximately
equal, is in the range of 0.62 of 0.627, but empirical
estimates ofβ based on raw eddy covariance data sets
have always yielded lower numbers, in the vicinity of
0.56–0.58 (Baker, 1992; Pattey et al., 1993; Beverland
et al., 1996; Katul et al., 1996). Katul et al. (1996)
found that estimates ofβ varied among scalars during
any given sampling period, but found that the mean
values for each constituent over all time periods were
not significantly different, all falling in the previously
mentioned range of 0.56–0.58.

We now approach the issue in a slightly different
way. By definition,

w′C′ = b1σ
2
w (6)

whereb1 is the regression-estimated slope ofC against
w. Conditional sampling provides a simple means
to approximateb1 as 1C̄/w̄. The numerator can be
obtained as it has been in previous implementations,
from the mean concentration difference between the
air streams sampled from the upward and downward
eddies. The denominator is calculated from the means
of the instantaneous velocities of the upward and
downward eddies, andσ 2

w the variance of the vertical
wind speed, so that the flux is estimated as:

w′C′ = 1C̄

1w̄
σ 2

w (7)

This is not a radical departure from the original con-
cept of conditional sampling, but there is a key differ-
ence: we are using some additional information that
we previously threw away, namely the difference in
mean wind speed between the upward and downward
eddies. Inspection of Eq. (7) shows that this reduces
to the same approach that was taken by Pattey et al.
(1993), who used Eq. (1) but calculatedβ for each
time period asσw/1w̄.

The connection between eddy covariance and con-
ditional sampling is more evident from eqs. (6) and
(7) than in the original derivation, Eq. (1). There is no
empiricism in the form of aβ coefficient, and there
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is no reliance on biserial correlation. However there
is an obvious question about the accuracy of1C/1W
as an estimator ofb1. Furthermore, there is a yet un-
plucked nettle briefly alluded to earlier, the effect of
measurement error in the predictor variable,w. How
does it affect conditional sampling?

If w1 is the measured vertical wind speed, each
value is composed of the true instantaneous wind
speed,w, and a measurement error component,φ:

w1 = w + φ (8)

The variance that is measured becomes

σ 2
1 = σ 2

w + σ 2
f (9)

Thus, the measured estimate of the variance of the
vertical wind speed is a biased estimator, with a bias
factor >1. What about estimates of the covariance and
the regression parameters? An analysis by Velikanov
(1965) shows that the effect of measurement errors in
both the predictor and response variables (assuming
that those errors are random and uncorrelated) is a
systematic underestimate ofr, the bias factor being

σwσc

σw1σc1
(10)

where the standard deviations in the numerator are
the ‘true’, and those in the denominator the measured
standard deviations, which incorporate both the true
underlying variability and the measurement error. The
covariance is unaffected by therandommeasurement
error, an important attribute of flux measurement by
eddy covariance. However, the regression estimate
of the slope is affected. The bias factor is<1, and
depends on the ratio of the standard deviation of the
predictor ‘error’ component to the true underlying
standard deviation of the predictor. The situation be-
comes more complicated if the measurement errors
of either variable are correlated with the predictor,
i.e. if the covariance of the vertical wind speed with
either measurement error is nonzero (Draper and
Smith, 1981), but this would be a problem for all eddy
covariance-based methods. In general, however, if the
measurement error is small relative toσw, the regres-
sion estimate of the slope will be relatively close. If
such is not the case, the recommended statistical ap-
proach (Wald, 1940; Bartlett, 1949) is to separate the
data into three equal parts based on the predictor vari-
able (in our case,w), throw out the middle third, and

compute the slope from the quotient of the difference
of the means of the two remaining bins.

How then will measurement error inw affect condi-
tional sampling? Recall that the original derivation in-
volves substitution of a biserial estimator ofr, Eq. (4),
into a formula for the covariance, Eq. (3), resulting in
Eq. (5), repeated here for convenience:

w′C′ = pq

z
1Cσw (11)

Since random errors in measurement ofw will cause
systematic overestimate ofσw, this equation will over-
estimate the flux if the biserial estimate ofr that it
contains is unbiased.

In the revised approach to conditional sampling, the
covariance, or flux, is shown to be equal to the product
of the regression estimate of the slope and the vari-
ance of the vertical wind speed (Eq. (6)). Again, ran-
dom measurement error inw will cause a systematic
overestimate ofσ 2

w. In the case of Eq. (6), that error
is cancelled out sinceb1 is the regression-estimated
slope, which by definition containsσ 2

w in the denomi-
nator, and hence has a compensatory bias factor. Thus,
Eq. (7) will yield the correct flux only if the slope that
is computed from conditional sampling (1C/1W) is
an accurate estimator ofb1. The methods suggested for
extracting the true slope from data sets in which both
variables contain measurement errors (Wald, 1940;
Bartlett, 1949) should produce overestimates ofb1
and, therefore, should overestimate the flux if used in
Eq. (7), if the measurement error is sufficient to cause
non-negligible error inσ 2

w.
We now raise two questions for consideration in the

remainder of the manuscript:
1. How good is the conditional sampling approxima-

tion of b1?
2. Is the contribution of random measurement error

to σ 2
w large enough to affect flux measurements by

conditional sampling?

2. Materials and methods

A number of data sets were used to examine the
questions raised in the preceding discussion. All were
collected at the University of Minnesota’s Rosemount
Agricultural Experiment Station, located 24 km south
of St. Paul (44◦45′N, 93◦05′W) using a 1-D sonic
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anemometer, a 0.0127-mm diameter thermocouple,
and an open-path krypton hygrometer (Campbell
Scientific, Logan, UT). The sensible heat flux data
were recorded above a bare field immediately after
planting in June 1992, and were previously used by
Baker (1992) for computingβ, the coefficient of pro-
portionality in Eq. (1). The latent heat flux data were
collected during the summer of 1996 over an alfalfa
canopy. The sampling rate in all cases was 10 Hz,
and the height of measurement 2 m. Finally, the ran-
dom measurement error of our sonic anemometer was
measured by installing it inside a growth chamber
(60 cm×115 cm×100 cm high). All chamber orifices
were sealed, the chamber was turned off, and the
anemometer was sampled at 10 Hz. The variance of
the apparent vertical wind speed was then computed
for several successive 30-min periods.

3. Results and discussion

If the contribution of measurement error,σ 2
f , to

the total variance inw in Eq. (9) is significant, then
we would expect that it would have a proportion-
ately larger influence when the total variance is small,
and one manifestation of this should be a dependence
of empirically-derivedβ (Eq. (1)) on the total vari-
ance. According to Baker (1992),β was calculated by

Fig. 1. Ratio of sensible heat flux to the product ofσw and the difference in mean heat content between upward- and downward-moving
eddies (β), plotted against variance in vertical wind speed.

regressing sensible heat fluxes against the product of
σw and the difference in mean heat content,ρCpT, be-
tween upward and downward eddies. For each of the
two large data sets they obtained a value of 0.56. The
first of those data sets, measured over a bare soil with
a broad range of sensible heat fluxes, was reanalyzed
by plotting the ratio of the original dependent and in-
dependent variables against each corresponding mea-
sured variance in vertical wind speed (Fig. 1). This
is, in effect, a plot of individually determinedβ val-
ues against total measured variance inw. Data from
time periods in which the absolute value of the sensi-
ble heat flux was<5 W m−2 were excluded. Though
there is understandably much more scatter in the data
from periods with low turbulence, there is no appar-
ent dependence ofβ on σ 2, suggesting that the con-
tribution of measurement error to the measured vari-
ance ofw is sufficiently small so that much of the
preceding discussion regarding its possible effects is
moot, at least for this particular sonic anemometer.
Additional confirmation of this was found in the null
measurements made by placing the anemometer in a
sealed, unventilated growth chamber. The measured
variances for a series of 30-min averaging periods
were all below 9.0×10−6 m2 s−2, which would be a
trivial contribution to the total variance measured in
the field, except under conditions of extreme stability.
Furthermore, the similarity amongβ values found by
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independent groups, working with various different
sonic anemometers, also supports the conclusion that,
for commercially-available instruments, the contribu-
tion of measurement error to the total variance inw is
negligible.

Why then are empirical determinations ofβ con-
sistently somewhat lower than the theoretical expec-
tation? The assumption that1C̄/w̄ is a reasonable
approximation for the regression estimate of the slope,
b1, is implicit within the original derivation of con-
ditional sampling (Baker, 1992) and explicit within
the revised derivation presented in this paper. Baker
(1992) found that it overestimated the slope due to
nonlinearity in theC vs.w relation, and hence was the
primary source of deviation ofβ from its theoretical
expectation. Katul et al. (1996) arrived at a similar
conclusion based on eddy covariance data for four
scalars. We examined this assumption further using a
number of data sets containing 10-Hz measurements
of vertical wind speed and absolute humidity, collected
above an alfalfa canopy in the summer of 1996. The
data were first analyzed to obtain the mean covariance
and the regression parameters. Then they were pro-
cessed as if they had been conditionally sampled; i.e.
the data were sorted into bins according to the vertical
wind speed. This was done for a variety of triggering
strategies, simulating deadbands scaled toσw, and
ranging from 20 to 100% ofσw. After subdividing the
data in this manner, mean values for wind speed and
concentration in each bin were computed to determine

1C

1W
= C̄up − C̄dn

w̄up − w̄dn
(11)

All slopes computed in this way were compared to
b1, the regression estimate of the slope, recalling that
this value, when multiplied byσ 2

w, will by definition
yield the covariance and, hence, the flux, regardless
of whether the underlying relationship is truly linear.

Fig. 2 shows a typical set of results for one 30-min
sampling period. Conditional sampling without a
deadband overestimatesb1, Fig. 2A, which has a sim-
ilar appearance to a plot for sensible heat shown by
Katul et al. (1996). The estimate improves as the dead
band increases, with the best estimate occurring at a
deadband of approximately±0.9σw (Fig. 2B). Fig. 3
contains the same data from all sampling periods, and
they show that conditional sampling without a dead-

Fig. 2. Individual data points, sampled at 10 Hz above an alfalfa
canopy. (A) Dashed line represents regression estimate of slope,b1.
Solid line represents slope estimated from(C̄up−C̄dn)/(w̄up−w̄dn).
(B) Same data as in (A). Again the dashed line is the regression
estimated slope,b1, but this time the solid line represents the
slope estimated from conditional sampling with a deadband of
±0.9σw, i.e. (C̄up − C̄dn)/(w̄up − w̄dn), calculated using only the
data outside the vertical dashed lines.

band consistently produces1C̄/w̄ > b1, with a mean
ratio of b1 to 1C/1W of 0.86. This is consistent with
our earlier findings on both latent and sensible heat
above a soybean canopy (Baker, 1992) and with the
results of Katul et al. (1994). Furthermore, the effect
of increasing deadband size on the accuracy of slope
estimation is also consonant with the results of both
Pattey et al. (1993) and Katul et al. (1996).

Another consequence of using a deadband is that the
separation between the means increases, i.e.1C̄ and
1w̄ both become larger. This should have the effect
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Fig. 3. Ratio of regression-estimated slope to conditional sampling
estimate of slope, as a function of deadband width, for 10 separate
30-min intervals of 10 Hz sampling on vertical wind speed and
vapor density. The data were actually sampled without a deadband;
deadband widths >0 were simulated in post-processing. The fitted
curve has the formy=0.855+0.185x2.

of reducing the variance in estimation ofb1, which is
a function of the variance of the response variable and
the sum of the squares of the residuals of the predictor
variable:

σ 2
b1

= σ 2

∑n
i=1(Xi − X̄)2

(12)

This cannot be applied in any absolute sense for con-
ditional sampling, but we can calculate a relative vari-
ance for the slope estimate as a function of deadband
size for a normally distributed variable. That is shown
as a dashed line in Fig. 4, along with the variance of
the relative slope estimates at each deadband level in
Fig. 3, also plotted against deadband size. The agree-
ment is quite good, and leads to the following tentative
conclusion: random errors in flux estimation by con-
ditional sampling should decrease as deadband size
is increased. There are practical limitations to this,
since increasing the deadband size decreases the total
amount of air sampled. Oncley et al. (1993) examined
this issue and showed from theoretical considerations
that the dependence of the ‘signal-to-noise’ ratio on
deadband size should have a broad maximum in the
vicinity of ±0.6σw.

The use of a deadband in conditional sampling thus
seems to be a good idea. This should apply whether
Eq. (1) or Eq. (7) is used, but with caveats. A deadband

Fig. 4. Variance of the relative slope estimation,b1(1C̄/1w̄)−1,
as a function of deadband width. Dashed line is the theoretical
expectation; the plotted points were calculated from the data shown
in Fig. 3.

requires some additional plumbing and programming,
both of which may introduce additional uncertainty
into the determination of1C̄/w̄. If a deadband is used,
β in Eq. (1) will be different than it will be in the
absence of a deadband, and the appropriate value can
be calculated following Pattey et al. (1993). In Eq. (7),
1C̄/w̄ must be multiplied by a correction factor to
obtain the best estimate ofb1, and that factor also
depends on deadband width. An initial suggestion for
the correction function is given in Fig. 3.

4. Conclusions

We have gently recast the derivation of conditional
sampling to show that it is a method for estimating
the covariance of vertical wind speed and scalar con-
centration (flux) as the product of the variance of the
vertical wind speed and the regression slope,b1, of
the concentration vs. wind speed relation. There is a
danger in this; random error in the wind speed mea-
surement biases conditional sampling in ways that do
not affect true eddy covariance. It appears that the
noise level of commercially available sonic anemome-
ters is sufficiently low that this is not significant, but
it is probably necessary for potential practitioners to
satisfy themselves that this is true for their particular
instrument. We also found, consistent with previ-
ous investigations, that1C̄/w̄ obtained from condi-
tional sampling without a deadband overestimatesb1.
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Inclusion of a deadband increases the accuracy and
decreases the variance of slope estimation, with an
optimum value in the vicinity of±0.9σw.

The universality of conditional sampling remains
an open question, but less so with each passing field
study. The general consistency of results reported in
the literature from diverse groups for a variety of trans-
ported scalars suggests that the joint distribution of
wind speed and entrained species possesses robust fea-
tures, encouraging the application of such relatively
simple measurement methods to otherwise difficult en-
vironmental monitoring and research problems.
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